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Abstract—Team 2’s main goal, which was motivated by a
simple drawing robot, was to put emphasis on making robots
more useful in daily lives. Robot design with kinematics and
trajectory following with dynamics calculation of the manipulator
have been taught throughout the series of the 263 robotics courses
at UCLA. This paper presents the simulation of the carving robot
arm to prove the ability that the robotic arm can both control
force and motion along the trajectory on an wooden cube. First,
simple descriptions of the control methods are presented. Then,
the robot designs with its parameters are shown. Then, the paper
describes the necessary assumptions needed for the simulation
with the general two controls algorithm. Next, snapshots of the
simulation are described in detail with the discussion of the effects
of different gain values that were used during the simulation. The
results of the project will be applicable to artistic works that deal
with small objects, miniature carving robot control methods and
nano-scale etching machine in the IT industry field.
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I. OVERVIEW OF THE PROJECT

Different types of manipulator robots are being researched
by scientists to increase the productivity in the real world by
developing robot’s ability to recognize the environment and
perform more detail works such as selective object picking
in random situations [1]. Especially in the industrial sites,
manipulator robots are mainly developed to perform works that
are difficult for humans or to assist humans[2]. These robots
are generally big size, heavy and costly, people assume that
they are not close to our daily life yet. Therefore, numerous
efforts have been made for people to study, learn or understand
robots in the field of education and science; a simple drawing
robot[3] has an application in the art industry, which is
very effective in terms of easy accessibility for daily life
usages. The drawing robot’s mechanism is a simple motion
control along the trajectory without considering force and the
orientation of the end-effector.

In order to perform more artistic works such as painting
or carving, the manipulator should be able to be precisely
control and stably interact with the environment[4]. In this
sense, it is significant to conduct researches to focus on the

detail interaction between the robot and humans or between
the environment, for that is the very basic condition to co-live
with people. To go beyond more than just a painting robot,
this paper presents a simple carving robot.

II. OBJECTIVES OF THE CONTROLLER DESIGN

The main purpose of this robot is to carve an wooden block
using two different control methods: Joint Space Inverse
Dynamics Control and Hybrid Force / Motion Control.

A. Joint Space Inverse Dynamics Control

Figure 1[5] shows the Joint Space Inverse Dynamics Control
Block Diagram, where the inner feedback loop, covered in
green, is used to obtain a linear and decoupled input/output
relationship and the outer feedback loop, covered in red, is
used to stabilize the overall system. The main goal of this
control is to perform exact linearization of system dynamics
by using nonlinear state feedback. With a given undamped
natural frequency, ωn and a damping ratio, ζ, KP and KD

are calculated as following:

KP = diag(ω2
n1, ..., ω

2
nn)(1)

KD = diag(2 ∗ ζ1 ∗ ωnn, ..., 2 ∗ ζn ∗ ωnn)(2)

Fig. 1. Joint Space Inverse Dynamics Control Block Diagram



Fig. 2. Hybrid Force/Motion Control Block Diagram

Fig. 3. Bird eye view of the Carving robot manipulator originated from RTiST

The two equations[6] give a decoupled system. This control
method is used to move the arm as a free motion in the z-
direction of 10 cm. The exact path of the robot is given, which
allows to calculate corresponding joint angles through inverse
kinematics. The qd, angle desired, values are then put as inputs
to the controller.

B. Hybrid Force / Motion Control

Figure 2[7] shows the Hybrid Force/Motion Control Block
Diagram. The main goal of this controller is to separate control
of end-effector motion and forces into two separate decoupled
problems. The reference values are force-based and motion
based that’s treated separately depending on the decoupled
controllable sub-spaces denoted as Sf and Sv .

The user designs KPν and KDν from the control law[8],

αν = ν̇ +KPν(νd − ν) +KIν

∫ t

0

(νd(s)− ν(s))ds(3)

The user also designs KPλ and KDλ from the control law[8],

fλ = λ̈d +KDλ(λ̇d − λ̇) +KPλ(λd − λ)(4)

Hybrid Force/Motion Control is used to carve wood by 1 cm
deep in the z-direction, while moving along the trajectory line
of 20 cm or 15 cm along the y-direction.

III. METHODS

A. Robot Design

The robot design was originated from the RTiST, a drawing
robot developed in 263A course in the Fall quarter. The detail

Fig. 4. Side view of the Carving robot manipulator originated from RTiST

features can be obtained in Figure 3 and 4. The operating
mechanism is similar with a commercial 3d printer mounted
on a gantry frame. The X, Y position of the end-effector are
determined by the 2 prismatic joints moving along the square
frame and the z position is controlled by the 2 revolute joints
of the 2-link planar arm. Brief specifics of the robot are that
the link lengths are 18 cm each and each joint is operated by
a MX-28A motor. The milling tool is at the end of link 2 and
the total height of the gantry frame is 30 cm.

B. Assumptions

The first and main assumption for the project is that the
robot moves along the Y direction with no friction. Specifi-
cally, in the real world, the robot carves along X, Y, Z axis
as the arm follows the trajectory on a cube, which means the
robot has to control force and motion at the same time for all
directions. The reciprocity condition[9],

hTe ∗ ve = 0(5)

gives the constraint on the robot that it cannot control force
and motion along same direction for the hybrid force / motion
control. Therefore, for the carving performance, the force
control method is applied along the z-axis that carves the cube
1 cm deep and the motion control method is applied along the
y-axis direction that follows the straight line trajectory.

The next assumption is that the end-effector’s X and Y
positions, which corresponds the starting point of the tra-
jectory to carve the cube, are fixed. This is mainly due to
the insufficient knowledge and skills of the prismatic joint
controls; the original idea was to move the robot in the X and
Y direction by controlling prismatic joints on the gantry frame.
The compensation for this limitation is to fix the starting point
and carve a straight line, and then the cube would be rotated
90 degrees to continue the carving trajectory of a desired
rectangle trajectory.

Third, the parameters for the robot and the motors are from
Solidworks and from the instructions of the MX-28A motor.
Parameters below are decided values for the project. The mass
of the each link

mlink = 1.87 kg

The length of the each link

llink = 0.18 m



Fig. 5. Algorithm Flow Diagram

The inertia moments relative to the center of the mass of each
link

Icm = 0.09 kg ∗m2

The mass of the each MX-28SA motor

mmotor = 0.04 kg

The inertia moments of each motor

Imotor = 0.01 kg ∗m2

In addition to the indicated parameters, another assumption
is that the tool does not affect the dynamics of the robot. The
tool has a function of drilling, but the mass is negligible for
the simplicity of the calculation of dynamics.

For the simulation, the stiffness of the wood being much
more elastic than the real wood’s stiffness is considered.
Because of the robot’s small dimension, light weight, and low
motor power, it cannot carve the hard wood. As a result, the
assumed stiffness of the cube is 1500Nm for this project, which
is much less than the actual stiffness of the wooden cube. For
the stiffness calculation, the wooden block is assumed to be a
Cedar, Northern White wood, which has a Young’s Modulus of
4400 MPa[10]. Then, the area that the wood is cut is 0.01cm2,
with the height of L = 2cm. Using the relationship of the
stiffness and Young’s modulus,

k = Y ∗ A
L
(5)

k = 2200
N

cm
= 220000

N

m

Lastly, the desired trajectory was calculated with a trape-
zoidal velocity profile introduced in the provided functions in
263C course homeworks.

C. Algorithm Flow Diagram

Figure 5 shows the general flow diagram of the algorithm.
The robot is placed at an initial position. Then, using Joint
Space Inverse Dynamics Control, the arm moves down to the
top of the block. Once the milling tip reaches the top of the
block, the robot uses Hybrid Force/Motion Control to carve
back and forth of the line segment. Once it comes back to the
original position, the robot then moves up using Joint Space
Inverse Dynamics Control, then the cube is re-positioned; this
concludes the first carving line segment. Then, this process
repeats until the end.

Fig. 6. Initial Position of the Robot

Fig. 7. Robot Arm Going Down Using Joint Space Inverse Dynamics Control

IV. RESULTS

A. Video Simulation

A YouTube link: Video Link is attached for the simulation.

B. Joint Space Inverse Dynamics Control

The top left plot of Figure 6 from the simulation shows
the robot in the Y-Z plane. The red horizontal line indicates
the location of the surface block, which is at 2 cm. The top
right shows the camera view of the set up with the robot and
the block. The bottom left shows the bird’s-eye view of the
surface of the block. The bottom right shows the bird’s-eye
view of the system’s set up.

Figure 7 shows the robot arm as it is going down to top of
the block using Joint Space Inverse Dynamics Control. The
initial and final angles are calculated from inverse kinematics
of two revolute planar arm, which are then inserted as inputs
to the control algorithm. Figure 8 shows the actual Joint 1
trajectory and the desired Joint 1 trajectory as the robot goes

https://www.youtube.com/watch?v=nihArZl8k4I


Fig. 8. Joint 1 Trajectory as the robot goes from (0,100) to (0,20)

Fig. 9. Joint 2 Trajectory as the robot goes from (0,100) to (0,20)

from (0,100 mm) to (0,20 mm). Figure 9 shows the joint 2
angle trajectory. These trajectories have been calculated with
a trapezoidal velocity profile. Figure 10 shows both the joint
angle errors with respect to time; the error is in the magnitude
of 10−3 and the error is stabilized at around two seconds.

C. Hybrid Force/Motion Control

Figure 11 shows the snapshot of the simulation as the robot
is carving the block by 1 cm as it travels in the y-direction. The
bottom left of the simulation shows the trajectory of how the
block is being carved; the red line indicates the path that the
robot carving is following. After the robot carves by 20 cm, it
carves back by 20 cm to come back to the original position.
Then, the robot arm moves up to complete the algorithm
mentioned in Section III. Methods Part C.

After the arm is lifted up, the block is then rotated and
placed in order to cut the block horizontally. The current
limitations of the robot only allows it to move in the y-
direction and not in the x-direction, which forces the cube
to be rotated. Figure 10 shows the robot carving the block
horizontally as it travels in the y-direction by 10 cm. This
process is repeated until all four lines are cut.

Fig. 10. Joint Angle Error as the robot goes from (0,100) to (0,20) with
KP = 100, KD = 16

Fig. 11. Robot carving the block as it travels in the y-direction

Figure 12 shows the final result of how the block is cut
from the top-down view. The rectangle that is cut is 20 cm
long and 15 cm wide centered at (375 mm, 300 mm).

V. DISCUSSION

A. Joint Space Inverse Dynamics Control

1) Gain Value Comparisons: For the joint space control,
angular velocity is set to

ζ = 0.8, wn = 10
rad

s

. Then, with the equation (1) and equation (2), the KP and
KD values are calculated as KP = 100 and KD = 16; the
two joints have equal magnitudes in the gain values. To test
the effects of different gain values, the angular velocity has
been modified to

ζ = 0.8, wn = 5
rad

s



Fig. 12. Robot carving the block horizontally as it travels in the y-direction

Fig. 13. Final Result of the carved block in the bird’s-eye view

. Then, with the same calculation methods, the KP and KD

values are calculated as KP = 25 and KD = 8.
Figure 14 shows both the joint angle errors as the robot goes

from (0,100 mm) to (0,20 mm). Comparing with Figure 10
where the gain values are different, KP = 100 and KD = 16,
the error magnitude of Figure 14 is twice that of Figure 10;
this results in that the higher the gain values, the smaller the
error becomes.

2) Capabilities: Due to small errors shown in Figure 10,
the robot is able to move down in almost a straight path using
the Joint Space Inverse Dynamics Control. Even though there
is an error towards the end of the trajectory, the error is small
enough to not have significant effects to the movements of the
robot.

3) Limitations: The limitations of the Joint Space Inverse
Dynamics Control mainly come from the inverse kinematics
solution approach. In a normal 2 revolute joint planar arm,
there are four possible solutions (elbow up front, elbow

Fig. 14. Joint Angle Error as the robot goes from (0,100) to (0,20) with
KP = 25, KD = 8

Fig. 15. Velocity error of the end effector with KPν = 20, KIν = 100 and
KP = 100, KD = 20

down front, elbow up back, elbow down back). However, the
current inverse kinematics approach chooses only one possible
solution. This caused some solutions to project inaccurate
trajectories that resulted from trapezoidal velocity profile,
which resulted in the robot suddenly moving from elbow up
to elbow down positions or from elbow down front to elbow
up back, which is not ideal in realistic situations.

B. Hybrid Force/Motion Control

1) Gain Value Comparisons: Given desired contact force
being 15 N

m , the robot carves with depth of 1 cm deep while
travelling in a straight line of the trajectory of 20 cm long.
The first approach to set the gain values for the hybrid force
and motion controller as

ζ = 1, wn = 10
rad

s

to make the system to be critically damped. Considering
second-order system’s control equation,

ω2
n = 100 = KIν = KP

2 ∗ ζ ∗ ωn = 20 = KPν = KD

Figure 15 to 17 shows the results of the Hybrid Force/Motion
control with given the gains. Velocity errors are small and
stabilize within 1.5 seconds, which is satisfactory for the



Fig. 16. Contact force of the end effector with KPν = 20, KIν = 100 and
KP = 100, KD = 20

Fig. 17. Actual movement of the end-effector along the trajectory with
KPν = 20, KIν = 100 and KP = 100, KD = 20

robot motion. In Figure 16 and 17, the trajectory following
along the y direction is exactly 20cm as desired. However, the
force control aspects are not suitable for clear carving because
there’s an overshoot in the contact force graph, which makes
the robot to apply more than desired force on cube and the
strange and unstable performance of the end effector has been
observed.

In order to eliminate those two undesired effects, increased
force controller gains are applied to the system, which expects
the trajectory and contact force to be faster than before. The
results are from Figure 18 to 20 and the performance seems to
be more ideal. However, according to the force and trajectory
graphs, the carving output shows very rough and bumpy
surface with fast oscillation in the force control. However, the
gain values can’t be increased to infinity or be too large for
the better performance because it causes the damage on the
motor due to the limitation of the motor capacity.

After some trial and error, suitable gains, KPν = 20, KIν =
100 and KP = 240, KD = 40, were found for the cube
carving performance as seen from the Figure 21 to 23. The
arm reacts to follow the trajectory in moderate time and values
and the desired contact force is achieve in approximately 0.7
seconds so that the carved line shows quite smooth surface.

The remaining problem is that the robot cannot carve the
cube 1 cm deep for the whole line because it does not exactly
follow the trajectory due to the errors in transient phase. To
compensate for the lack of the performance, the robot is
planned to carve the line two times from right to left and left
right so that both ends of the straight line are cut clearly with
fine surface. This is why the arm comes back to the starting

Fig. 18. Velocity error of the end effector with KPν = 20, KIν = 100 and
KP = 500, KD = 50

Fig. 19. Contact force of the end effector with KPν = 20, KIν = 100 and
KP = 500, KD = 50

point again in the simulation.

2) Capabilities: The application of the Hybrid Force /
Motion controller provides carving straight line on the cube
of 1 cm deep with clear cut of both left and right ends on the
line. The robot can also apply force of 15 N exactly on the
cube.

3) Limitations: During the process of the project, the gain
tuning issues for the hybrid controller was the main limitation.
Obtaining the ideal performance in both motion and force
control was difficult mainly because gain values for motion
and force controller are dependent, which made the designer
difficult to determine the suitable values for the project. When
the force performance is satisfied, the oscillation on velocity
error becomes larger and in the case that the velocity error and
stabilized condition are suitable, carving depth becomes lower
than the goal. It is similar with the ”waterbed effect” in that an
enhancing one side of the performance results in decreasing
the quality of the other side of the performance. The designer
had to decide controller gains which nearly satisfies the actual
performance to be compatible with the desired outcome. From
the experience of the project, deeper knowledge on force /
motion control is required for the realistic robot arm control
to interact with the environment.

C. Challenges

The critical challenge was that one of the group members
decided to drop the class, so the project had to be done
with two members; this caused the team to rush through
the schedule of the project. Also, the first desired concept



Fig. 20. Actual movement of the end-effector along the trajectory with
KPν = 20, KIν = 100 and KP = 500, KD = 50

Fig. 21. Velocity error of the end effector with KPν = 20, KIν = 100 and
KP = 240, KD = 40

for the carving machine was to utilize the Hybrid Force /
Motion control during the entirety of the trajectory, but without
understanding the difficult contents and core concepts of the
controller without a class, the project had to be done after the
material has been taught.

Additionally, the work to rotate the cube after lifting the
arm up and down for the each segment carving had to be
done because of the inability to control prismatic joints. This
required the robot controller to incorporate the two control
methods: Joint Space Inverse Dynamics controller and Hybrid
Motion / Force controller.

Lastly, the robot’s current design had limitations to actually
carve the wood, which became a serious consideration for the
project. The current robot is too small and the motors don’t
have enough power to carve the wood with stiffness that’s
been calculated in Section III. Part B. The addition of one
more assumption, which was to reduce the magnitude of the
stiffness, was mandatory for the reasonable simulation. The
detail considerations in the design step and relating it with the
performance were great lessons for this project.

VI. FUTURE DIRECTIONS

There are multiple directions in which this project can
proceed in the future. The robot was initially designed to
move in the x,y direction with prismatic joints and z direction
with two revolute joints. However, the scope of 263C: Control
of Robotics didn’t cover the controls of prismatic joints as
it only covered control of revolute joints. Control in both
x,y directions will allow the robot to cut in any directions,
without having to re-position the block every time it completes
one segment; this will allow the robot to cut through curved

Fig. 22. Contact force of the end effector with KPν = 20, KIν = 100 and
KP = 240, KD = 40

Fig. 23. Actual movement of the end-effector along the trajectory with
KPν = 20, KIν = 100 and KP = 240, KD = 40

lines. Also, realistically, control in both force and motion
along the same direction is necessary especially for authentic
designs with dynamic curves and different depth of the carving
performance, which means that friction should be considered
in both x,y direction. Lastly, the robot that was built for the
simulation purposes cannot actually cut through the wood
block because it is not big enough and doesn’t have strong
motors to apply enough force to cut through an actual wood
block. The control algorithm can be redesigned to have enough
force to carve the actual wood.
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VII. APPENDIX

1. https://www.youtube.com/watch?v=nihArZl8k4I :Link
of the simulation video

2. Contributions

Contributions
Andy - Joint Space Inverse Dynamics

Control
- Simulation
- Report

Dooseop - Hybrid Force / Motion Con-
trol
- CAD modifications
- Report

3. Custom Solidworks CAD designs
The CAD models have been submitted with this report

4. Custom Code
The simulation code is attached at the bottom of this

report.



clear all;clc;close all;
global links H commands ;
global frame_data link1_data link2_data link3_data;
global link4_data ;
global T_W T_0 speed link_vars goal ;
global should_stop;

should_stop = false;

% Robot attributes
% Frame 0 offset
% Link lengths
links = [0 0 0 180 180];
H = 250;

% Path data
rr = 0.75;
xx = sqrt(3)/2*rr;

% How much to move the pen
top = 250;

commands = {
    {'d', 300, 200, 300,400,0,400,600,20,0}...
    {'v', 300, 400, 300,400,0,400,600,20,0}...
    {'m', 300, 200, 300,400,0,400,600,20,0}...
    {'u', 300, 400, 300,400,0,400,600,20,0}...
    {'d', 300, 400, 300,250,0,600,400,20,0}...
    {'h', 450, 400, 300,250,0,600,400,20,0}...
    {'m', 300, 400, 300,250,0,600,400,20,0}...
    {'u', 450, 400, 300,250,0,600,400,20,0}...
    {'d', 450, 400, 400,200,0,400,600,20,0}...
    {'v', 450, 200, 400,200,0,400,600,20,0}...
    {'m', 450, 400, 400,200,0,400,600,20,0}...
    {'u', 450, 200, 400,200,0,400,600,20,0}...
    {'d', 450, 200, 550,250,0,600,400,20,0}...
    {'h', 300, 200, 550,250,0,600,400,20,0}...
    {'m', 450, 200, 550,250,0,600,400,20,0}...
    {'u', 450, 200, 550,250,0,600,400,20,0}...
};
% d = pencil down, v = vertical line, m = move back, u = pencil up,h =
% horizontal line
% .

% Wireframe data
frame_data = [
    0 0, 0 0, 0 280;
    600 600, 0 0, 0 280+90;
    0 0, 800 800, 0 280;
    600 600, 800 800, 0 280+90;
    0 600, 0 0, 280 280;
    0 600, 800, 800 280 280;
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    0 0, 0 800, 280 280;
    600 600, 0 800, 280 280;
    600 600-30, 0 0, 280+90 280+90;
    600 600-30, 800 800, 280+90 280+90;
    600-30 600-30, 0 800, 280+90 280+90
];

link1_data = [
    0 78 0 0 0 0;
    0 78 600 600 0 0;
     78 78 -50 650 0 0
];

link2_data = [0 -75 0 0 0 0];
link3_data = [0 180 0 0 0 0];
link4_data = [0 180 0 0 0 0];

T_W = eye(4);
T_0 = T_W*ht(fixed_angle(-pi/2, -pi/2, 0), [0; 0; H]);

% Initialize variables
speed = 10;

ox = 300;
oy = 200;
goal = [0 0 150];

link_vars = [oy ox ik_new([0 0 100], links)];

% Set up figure
fig = figure(1); clf;

% global vid;
% vid = VideoWriter('sim.avi', 'Uncompressed AVI');
% open(vid);

% update_robot(cmd);
%
subplot(2, 2, 3);
hold on
axis equal
axis([250 500 100 500]);
grid on
title("Surface of the block")
ylabel("Length (mm)")
xlabel("Length (mm)")
sy = 0;
sx = 0;
% Main loop
for i=1:length(commands)
    cmd = commands{i};

    % If start of move, move arm to the bottom
    if cmd{1} == 'd' || cmd{1} == 'u'
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        if cmd{1} == 'd'
            z = linspace(150,220,2);
        else
            z = linspace(240,150,2);
        end
        actual_angle = main_contr(z,cmd{1},links);
        actual_angle = actual_angle{1};
        for w = 2:length(actual_angle)
            prev_ang = actual_angle(w-1,:);
            current_ang = actual_angle(w,:);
            prev_ang = round(prev_ang,3);
            current_ang = round(current_ang,3);
            if prev_ang ~= current_ang
                link_vars(3:4) = prev_ang;
                update_robot(cmd);
            end
        end

    end
    subplot(2, 2, 3);
    k = 1;
    if cmd{1} == 'v'
        previous_cmd = commands{i-1};
        % this y is robot frame's y
        y = -1*abs(cmd{3}-previous_cmd{3});
        pos_actual = main_contr(y,cmd{1},links);
        pos_actual = pos_actual*1000;
        starting_x = previous_cmd{2};
        end_x = cmd{2};
        starting_y = previous_cmd{3};
        end_y = cmd{3};

        for w = 2:length(pos_actual)
            prev_pos = pos_actual(w-1,:);
            current_pos = pos_actual(w,:);
            prev_pos = round(prev_pos,3);
            current_pos = round(current_pos,3);
            if prev_pos ~= current_pos
                actualpose(k,:) = prev_pos;
                k = k+1;
            end
        end
        x_traj = linspace(starting_x,end_x,length(actualpose));
        y_traj = linspace(starting_y,end_y,length(actualpose));
        for j = 2:length(actualpose)
            ox = x_traj(j-1);
            nx = x_traj(j);
            oy = y_traj(j-1);
            ny = y_traj(j);
            plot_line(ox,nx,oy,ny)
            pose = actualpose(j-1,:);
            angle = ik_new([0 pose], links);
            link_vars(3:4) = angle;
            update_robot(cmd);
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        end
    end
    k = 1;
    if cmd{1} == 'h'
        previous_cmd = commands{i-1};
        % this y is robot frame's y
        y = -1*abs(cmd{2}-previous_cmd{2});
        pos_actual = main_contr(y,cmd{1},links);
        pos_actual = pos_actual*1000;

        starting_x = previous_cmd{2};
        end_x = cmd{2};
        starting_y = previous_cmd{3};
        end_y = cmd{3};
        for w = 2:length(pos_actual)
            prev_pos = pos_actual(w-1,:);
            current_pos = pos_actual(w,:);
            prev_pos = round(prev_pos,3);
            current_pos = round(current_pos,3);
            if prev_pos ~= current_pos
                actualpose(k,:) = prev_pos;
                k = k+1;
            end
        end
        x_traj = linspace(starting_x,end_x,length(actualpose));
        y_traj = linspace(starting_y,end_y,length(actualpose));
        for j = 2:length(actualpose)
            ox = x_traj(j-1);
            nx = x_traj(j);
            oy = y_traj(j-1);
            ny = y_traj(j);
            plot_line(ox,nx,oy,ny)
            pose = actualpose(j-1,:);
            angle = ik_new([0 pose], links);
            link_vars(3:4) = angle;
            update_robot(cmd);

        end
    end
    if cmd{1} == 'm'
        previous_cmd = commands{i-1};
        % this y is robot frame's y
        if previous_cmd{1} == 'v'
            y = 1*abs(cmd{3}-previous_cmd{3});
        else
            y = 1*abs(cmd{2}-previous_cmd{2});
        end
        pos_actual = main_contr(y,cmd{1},links);
        pos_actual = pos_actual*1000;
        pos_actual(:,1) = y-pos_actual(:,1);
        for w = 2:length(pos_actual)
            prev_pos = pos_actual(w-1,:);
            current_pos = pos_actual(w,:);
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            prev_pos = round(prev_pos,3);
            current_pos = round(current_pos,3);
            if prev_pos ~= current_pos

                angle = ik_new([0 prev_pos], links);
                link_vars(3:4) = angle;
                update_robot(cmd);
            end
        end
    end

    if i == length(commands)
        dwg = subplot(2,2,3);
        figure;
        x = axes;
        hold on
        copyobj(dwg.Children,x)
        draw_cube([300,400,0],[400,600,0],0);
        view(0,90);
        axis vis3d;
        axis equal;
        grid on;
        axis([-50 650 -175 850 0 400]);
        ylabel("Length (mm)")
        xlabel("Length (mm)")

    end

end

% close(vid);
% disp("Done");
% done = 1;

function update_robot(cmd)
    global should_stop;
    if ~ishandle(1)
        should_stop = true;
        return;
    end

    subplot(2, 2, 1);
    block_surface_x = linspace(-250,100);
    block_surface_y = ones(1,100)*20;
    plot(block_surface_x,block_surface_y,'r')
    hold on
    draw_arm_fig();
    axis equal;
    axis([-250 100 0 300]);
    ylabel("Length (mm)")
    xlabel("Length (mm)")
    grid on;
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    dwg = subplot(2, 2, 3);
    x = subplot(2, 2, 2);

    cla;
    copyobj(dwg.Children, x);
    draw_cube([cmd{4},cmd{5},cmd{6}],[cmd{7},cmd{8},cmd{9}],cmd{10});
    draw_iso_fig();
    view(-45, 30);
    axis vis3d;
    axis equal;
    grid on;
    axis([-50 650 -175 850 0 400]);
    ylabel("Length (mm)")
    xlabel("Length (mm)")
    zlabel("Length (mm)")

    y = subplot(2, 2, 4);
    cla;
    copyobj(x.Children, y);
    view(0, 90);
    axis vis3d;
    axis equal;
    grid on;
    axis([-50 650 -175 850 0 400]);
    ylabel("Length (mm)")
    xlabel("Length (mm)")

    drawnow;
    pause(0.01);

%     global vid;
%     writeVideo(vid, getframe(gcf));
end

function plot_line(ox,nx,oy,ny)

    subplot(2, 2, 3);

    plot([ox nx], [oy ny], 'Color', 'r', 'MarkerSize', 2);
    ylabel("Length (cm)")
    xlabel("Length (cm)")

%     global vid;
%     writeVideo(vid, getframe(gcf));

%     plot([ox nx], [oy ny], 'Color', pen{1}, 'MarkerSize', pen{2});

%     update_robot(cmd)
end

function T=generate_frames(T_0, link_vars)
    L1 = 180;
    L2 = 125;
    L3 = 50;
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    T = zeros(4, 4, 8);
    T(:, :, 1) = T_0*TF(0, 0, link_vars(1), 0);
    T(:, :, 2) = T(:, :, 1)*TF(-pi/2, 0, link_vars(2), pi);
    T(:, :, 3) = T(:, :, 2)*TF(0, 0, 0, -pi/2-link_vars(3));
    T(:, :, 4) = T(:, :, 3)*TF(0, L1, 0, -link_vars(4));
%     T(:, :, 5) = T(:, :, 4)*TF(0, L2, 0, -link_vars(5));
%     T(:, :, 6) = T(:, :, 5)*TF(pi/2, L3, 0, link_vars(6));
end

% Drawing stuff
function draw_arm_fig()
    global link_vars links H;
    thetas = link_vars(3:4);

    x0 = 0;
    y0 = H;
    x1 = x0 + links(4)*cos(thetas(1));
    y1 = y0 + links(4)*sin(thetas(1));
    x2 = x1 + links(5)*cos(thetas(1)+thetas(2));
    y2 = y1 + links(5)*sin(thetas(1)+thetas(2));

    plot([x0 x1], [y0 y1], 'k');
    hold on;
    plot([x1 x2], [y1 y2], 'k');
    hold off;
end

function draw_iso_fig()
    global T_W T_0 link_vars frame_data;
    global link1_data link2_data link3_data;
    global link4_data;

    hold on;
    T = generate_frames(T_0, link_vars);

    draw_wireframe(frame_data, 'k', 2, T_W);
    draw_wireframe(link1_data, 'k', 2, T(:, :, 1));
    draw_wireframe(link2_data, 'k', 2, T(:, :, 2));
    draw_wireframe(link3_data, 'k', 2, T(:, :, 3));
    draw_wireframe(link4_data, 'k', 2, T(:, :, 4));

    hold off;
end

% Drawing auxillary functions
function draw_wireframe(d, col, ls, T)
    for i=1:size(d, 1)
        p = T*[d(i, 1:2); d(i, 3:4); d(i, 5:6); 1 1];
        plot3(p(1, :), p(2, :), p(3, :), col, 'LineWidth', ls);
    end
end
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function draw_vector(frame, x, y, z, c, thk)
    hold on;
    p = frame*[x; y; z; 1];
    p0 = [frame(1, 4); frame(2, 4); frame(3, 4); 1];
    dp = p - p0;
    quiver3(p0(1), p0(2), p0(3), dp(1), dp(2), dp(3), 0, c, ...
        'LineWidth', thk, 'MaxHeadSize', 0.3);
    hold off;
end

function T = TF(alpha, a, d, theta)
    T = [cos(theta) -sin(theta) 0 a
     sin(theta)*cos(alpha) cos(theta)*cos(alpha) -sin(alpha) -
sin(alpha)*d
     sin(theta)*sin(alpha) cos(theta)*sin(alpha)  cos(alpha) 
 cos(alpha)*d
     0 0 0 1];
end

function T=ht(R, Porg)
    T = [R Porg; 0 0 0 1];
end

function R=fixed_angle(g, b, a)
    R = R_Z(a)*R_Y(b)*R_X(g);
end

function R=R_X(t)
    R = [1 0 0; 0 cos(t) -sin(t); 0 sin(t) cos(t)];
end

function R=R_Y(t)
    R = [cos(t) 0 sin(t); 0 1 0; -sin(t) 0 cos(t)];
end

function R=R_Z(t)
    R = [cos(t) -sin(t) 0; sin(t) cos(t) 0; 0 0 1];
end

Undefined function 'jointspace_contr' for input arguments of type
 'double'.

Error in main_contr (line 8)
        ang_actual{i-1} = jointspace_contr(ang(i-1,:),ang(i,:));

Error in simulation (line 112)
        actual_angle = main_contr(z,cmd{1},links);

Published with MATLAB® R2019b
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